MAQUET
GETINGE GROUP

VENTILACIÓN SERVO-i[®]

FAMILIA SERVO-i VENTILATOR SERVO-i®

Configuraciones de SERVO-i

La familia SERVO-i[®] Ventilator consta de tres configuraciones:

*	Niños
Ů	Adulto
	Universal
	Configuración estándar
	Opciones
X	No procede

La familia de ventiladores SERVO-i cubre los muy diferentes requisitos de pacientes neonatos, pediátricos y adultos mediante una única plataforma de ventilación. La familia SERVO-i puede actualizarse con diferentes opciones para las necesidades futuras. Puede utilizarse el mismo equipo de ventilación en la cabecera de la cama y en la sala de RM*, lo que facilita la formación, el funcionamiento y el mantenimiento, aumentando así la eficacia y la flexibilidad.

*Debe firmarse un acuerdo con MAQUET; véanse las condiciones en la declaración de RM (N.º de catálogo 66 71 670) de SERVO-i.

	W	7	÷
VNI NAVA®			
NAVA [®]			
CPAP nasal	\times		
VNI PC			
VNI PS			
Medición de Sensor en Y			
CO ₂ Analyzer			
Nebulizador			
Conector de salida para alarma			
Heliox			
Índice de Estrés		\times	
Open Lung Tool [®]			
Automode [®]			
Bi-Vent/APRV			
VS			
VCRP (incl. SIMV (VCRP) + PS)			
VC (incl. SIMV (VC) + PS)			
PC (incl. SIMV (PC) + PS)			
PS/CPAP			
Software para todas las categorías			

NAVA Neurally Adjusted Ventilatory Assist (Asistencia respiratoria ajustada al sistema nervioso) VNI Ventilación no invasiva Ventilación obligatoria intermitente sincronizada SIMV **VCRP** Volumen controlado con regulación de la presión VS Volumen soporte VC Volumen controlado PS Presión soporte PC Presión controlada CPAP Presión positiva continua en las vías respiratorias

de pacientes

Clave para las abreviaturas

Uso previsto - General	
El SERVO-i Ventilator System:	Está diseñado para el tratamiento y la monitorización de pacientes recién nacidos, niños y adultos con fracaso respiratorio o insuficiencia respiratoria.
	Las indicaciones añadidas para el uso de la opción NAVA son que si la señal eléctrica del cerebro al diafragma está intacta; NAVA mejorará la sincronía entre el ventilador y los pacientes sin contraindicaciones para la inserción/intercambio de la sonda nasogástrica.
Instrucciones de uso	Lea atentamente el manual del usuario.
Fabricante legal	Maquet Critical Care AB
Otros productos	Véanse las hojas de datos independientes.
	Póngase en contacto con su proveedor local de MAQUET para obtener más información.

El sistema – Generalidades	
(€ 0123	Este equipo cumple con los requisitos de la Directiva de equipos médicos 93/42/CEE y para la clasificación Ilb. Número de identificación del organismo notificado en la marca CE: 0123.
Clasificación:	CEI 60601-1: 2005, Clase I, funcionamiento continuo
Normas:	 ISO 80601-2-12:2011 ISO 80601-2-55:2011 EN 13544-1:2007+A1:2009 CEI 60601-1, Tipo B (unidad base, unidad nebulizadora del paciente con cable y vías de gas) CEI 60601-1, Tipo BF (Analizador de CO₂) CEI 60601-1, Tipo CF a prueba de desfibrilación (cable y catéter Edi)
Nivel de presión sonora ponderada A (L _{pA})	<41 dB, medido a 1 m de distancia.
Clasificación IP	IP 21
Compatibilidad electromagnética (EMC):	Conforme a los límites especificados en CEI 60601-1-2:2007.
La ' <i>Declaración sobre EMC, Info</i> responsable' puede solicitarse a	
Gama de pacientes:	Peso:
Adultos, todos los regímenes de respiración:	10 – 250 kg
Niños, ventilación invasiva:	0,5 – 30 kg
Niños, NAVA + VNI NAVA:	0,5 – 30 kg
Niños, VNI PS+PC:	3 – 30 kg
CPAP nasal para niños:	0,5 – 10 kg

Condiciones de funcionamiento	
Temperatura de funcionamiento:	Entre +10 y +40 °C
Humedad relativa:	Entre el 15 y el 95% sin condensación
Presión atmosférica:	Entre 660 y 1.060 hPa
Presión mínima en el sistema de respiración:	–400 cm H ₂ O

Condiciones no operativas	
Impacto:	Aceleración máxima: 15 g.Duración del impulso: 6 ms.Número de impactos: 1000.
Temperatura de almacenamiento:	-25 a +60 °C (-13 a 140 °F)
Humedad relativa de almacenamiento:	< 95%
Presión atmosférica de almacenamiento:	470 a 1.060 hPa

Alimentación eléctrica	
Alimentación eléctrica, gama de selección automática:	100 – 120 V CA ±10%, 50 – 60 Hz o 220 – 240 V CA ±10%, 50 – 60 Hz.
Módulo de batería insertado:	
Alimentación por batería:	Con el ventilador se suministran dos módulos de batería. Pueden incorporarse hasta seis módulos de batería.
Capacidad de la batería:	Recargable, 12 V, 3,5 Ah cada módulo.
Tiempo de recarga:	Aprox. 3 h/batería.
Tiempo de alimentación por batería:	Al menos 3 h, usando seis baterías.
Externa 12 V CC:	12 – 15 V CC, 10 A
Consumo máximo de energía:	A 100 – 120 V: 2 A, 190 VA, 140 W. A 220 – 240 V: 1 A, 190 VA, 140 W.

El ventilador - Generalidades	
Dimensiones:	(Véanse los dibujos acotados de la página 15)
Interfaz de usuario:	Anchura 355 x Profundidad 53 x Altura 295 mm
Unidad de paciente:	Anchura 300 x Profundidad 205 x Altura 415 mm
Peso:	Aprox. 20 kg (unidad de paciente 15 kg, interfaz de usuario 5 kg)
Método de disparo:	Flujo, presión y Edi (opcional)
Presión operativa máx.:	Aproximadamente 115 cmH ₂ O
Flujo base:	
Adultos:	2 l/min
Niños:	0,5 l/min

Suministro de gas	
Presión de entrada de gas Aire/O ₂ :	200 - 600 kPa / 2,0 - 6,0 bares / 29 - 87 PSI
Normas de conexión disponibles:	AGA, DISS, NIST o norma francesa.
Falta de gas/pérdida de presión de gas:	En caso de falta de gas (aire u O ₂), el flujo se compensa automáticamente para que el paciente reciba el volumen y la presión que han sido predeterminados.

Conectores de gas del sistema de paciente		
Adaptadores cónicos:	Macho 22 mm/hembra 15 mm. Según ISO 5356-1.	
Puerto de salida de gas:	Cono macho de 30 mm	

Interfaz de usuario	
Peso:	Aproximadamente 5 kg
Colocación:	Puede acoplarse al carrito móvil, a una mesa, a una guía o a un poste (15 – 30 mm de diámetro).

Pantalla	_
Tipo:	Módulo TFT-LCD
Tamaño:	31 cm (12,1") diagonal
Área de visualización:	246 x 184,5 mm

áx. 6 cm $ m H_2O$ con un flujo de /s
áx. 0,1 ml/cmH ₂ O
lvula controlada por croprocesador
- 3,3 l/s
- 0,55 l/s

Canal espiratorio	
Caída de presión:	Máx. 3 cm ${ m H_2O}$ con un flujo de 1 l/s
Factor de compresión interna:	Máx. 0,1 ml/cmH ₂ O
Regulación de PEEP:	Válvula controlada por microprocesador
Retardo, medición del flujo espiratorio:	< 12 ms en el 10 – 90% de respuestas con un flujo de 0,05 – 3,2 l/s
Rango de flujo espiratorio:	0 a 3,2 l/s

Alarmas

Alaimas		
Presión en las vías respira (superior)	atorias	
Adultos, ventilación in	vasiva 16 - 120 cmH ₂ O	
 Adultos, ventilación no invasiva 	o 16 − 40 cmH ₂ O	
 Niños, ventilación inva 	siva: 16 – 90 cmH ₂ O	
Niños, ventilación no in	vasiva 16 – 40 cmH ₂ O	
Volumen minuto espirado (Límite superior de alarm		
Adultos:	0,5 – 60 l/min	
Niños:	0,01 – 30 l/min	
Volumen minuto espirado (Límite inferior de alarma)		
Adultos:	0,5 – 40 l/min	
■ Niños:	0,01 – 20 l/min	
Se puede silenciar perma solamente en la versión p	anentemente esta alarma (opción para niños)	
Alarma Ningún esfuerzo	del paciente (apnea)	
Adultos:	15 – 45 s	
Niños:	2 – 45 s	
Retorno automático al ré empiece a respirar por sí	gimen asistido cuando el paciente mismo	
Ningún esfuerzo uniformo paciente:	e del Sí, se describe en el Manual usuario	de
Frecuencia respiratoria:	1 - 160 respiraciones/min.	
Presión espiratoria final a	ılta: 0 – 55 cmH ₂ O	
Presión espiratoria final b	paja: 0 – 47 cmH ₂ O.	
	Nota. Poner la alarma a 0 (co equivale a desconectar la alarma.	ero
Presión continua alta:	Nivel de PEEP ajustado $+$ 15 cm ${\rm H_2O}$ superado dura más de 15 segundos.	nte
Concentración de O ₂ :	Valor establecido ±5 vol% c ≤18 vol%)

Alarmas	
Suministro de gas:	Por debajo de 200 kPa / 2 bares / 29 PSI y por encima de 600 kPa / 6,0 bares / 87 PSI
Batería:	 Batería con capacidad limitada: 10 min. No queda carga en la batería: menos de 3 min. Tensión de batería baja.
Concentración corriente final de ${\rm CO}_2$ (límites inferior y superior):	 0,5 - 20%. 4 - 100 mm Hg. 0,5 - 14 kPa.
Fugas fuera de rango en VNI:	Sí. Se describen en el Manual del usuario.
Alarmas técnicas:	Sí. Se describen en el Manual del usuario.
Especificación del autoajuste (límites de alarma):	Ventilación invasiva, únicamente regímenes controlados.
Presión en las vías respiratorias alta:	Presión máxima promedio $+10 \text{ cmH}_2\text{O}$ o, al menos, $35 \text{ cmH}_2\text{O}$.
Volumen minuto superior:	Volumen minuto espiratorio +50%.
Volumen minuto inferior:	Volumen minuto espiratorio –50%.
Frecuencia respiratoria superior:	Frecuencia de respiración +40%.
Frecuencia respiratoria inferior:	Frecuencia de respiración -40%.
Presión espiratoria final alta:	Presión espiratoria final media + 5 cmH ₂ O.
Presión espiratoria final baja:	Presión espiratoria final media – 3 cmH ₂ O.
 Concentración corriente final de dióxido de carbono superior (etCO₂): 	Concentración corriente final de dióxido de carbono +25%.
 Concentración corriente final de dióxido de carbono inferior (etCO₂): 	Concentración corriente final de dióxido de carbono -25%.

Regímenes ventilatorios - Ventilación invasiva

Ventilación controlada:

- PC
- VC

Puede configurarse con patrones de flujo alternativos

- VC con adaptación del flujo,
- VC sin adaptación del flujo,
- VC con flujo desacelerado

VCRP

	,	
Venti	lacion	asistida:

- PS/CPAP
- VS

Opcional con niños y adultos

Ventilación combinada:

SIMV (VC) + PS

Viene con el régimen de ventilación controlada correspondiente

SIMV (PC) + PS:

Viene con el régimen de ventilación controlada correspondiente

■ SIMV (VCRP) + PS

Viene con el régimen de ventilación controlada correspondiente

Bi-Vent/APRV

Ventilación con presión controlada en dos niveles ajustables independientemente, que permiten la respiración espontánea sin limitaciones en ambos niveles. (Opcional con niños y adultos)

Automode

- Régimen de control: VC <-> Régimen de soporte: VS
- Régimen de control: PC <-> Régimen de soporte: PS
- Régimen de control: VCRP <-> Régimen de soporte:
- (Opcional)

Regímenes de ventilación - Ventilación no invasiva (opcional)

VNI PC

VNI PS

CPAP nasal

Regímenes de ventilación - NAVA (opcional)		
NAVA	Asistencia respiratoria ajustada al sistema nervioso por medio de tubo endotraqueal o traqueotomía	
VNI NAVA	Asistencia respiratoria ajustada al sistema nervioso por medio de conexiones al paciente no	

invasivas

Presentación de curvas y bucles

Curvas en tiempo real - Se pueden mostrar hasta 4 curvas simultáneamente:

- Presión
- Flujo
- Volumen
- Necesita la opción SERVO-i CO₂ CO₂ Analyzer
- Edi Necesita la opción SERVO-i NAVA

Bucles:

Volumen / Presión*

*Es posible visualizar un bucle de referencia y tres bucles de superposición.

Flujo / Volumen*

*Mostrados simultáneamente con tendencias gráficas de Open Lung Tool, si se solicita.

Monitorización	Valor mostrado	Valor presentado de tendencia*
Frecuencia de respiración:	Sí	Sí
Resp. espontáneas por minuto (RRsp):	No	Sí
Presión pico en vías resp.:	Sí	Sí
Presión media en vías resp.:	Sí	Sí
Presión pausa en vías resp.:	Sí	Sí
Presión espiratoria final:	Sí	Sí
Presión CPAP:	Sí	Sí
Volumen corriente inspirado:	Sí	Sí
Volumen corriente espirado:	Sí	Sí
Volumen minuto inspirado:	Sí	Sí
Volumen minuto espirado:	Sí	Sí
Fracción de fugas en VNI (%):	Sí	Sí
Ti/Ttot:	Sí	No
Relación I:E:	Sí	No
PEEP total:	Sí	No
Pico Edi	Sí	Sí
Edi mín:	Sí	Sí
Cambiar a apoyo (resp/min)	No	Sí
Apoyo (%/min)	No	Sí
Concentración de O ₂ (medida):	Sí	Sí
Conc. periódica final de CO ₂ (etCO ₂):	Sí	Sí
Eliminación de CO_2 por minuto (CO_2) :	Sí	Sí
Eliminación de CO ₂ periódica (VTCO ₂):	Sí	Sí
$VM_e Esp / VM_e$:	Sí	No
Volumen minuto de espiración espontánea (VM _e Esp):	Sí	Sí
Flujo espiratorio final:	Sí	Sí

Monitorización	Valor mostrado	Valor presentado de tendencia*	
Compliance estática:	Sí	Sí	
Características dinámicas:	Sí	Sí	
Índice de Estrés	Sí	Sí	
Resistencia inspiratoria	Sí	Sí	
Resistencia espiratoria	Sí	Sí	
Elastancia	Sí	Sí	
Constante de tiempo	Sí	No	
P0.1:	Sí	Sí	
Trabajo respiratorio del paciente:	Sí	Sí	
Trabajo de respiración del equipo de ventilación	Sí	Sí	
Indicación de poca profundidad de respiración (SBI)	Sí	Sí	
Presión del suministro (O ₂ y aire):	Sí	No	
Tiempo restante de batería:	Sí	No	
Presión barométrica:	Sí	No	
*Valores de tendencia almacenados hasta 24 horas			

Función de diario	
Diario de eventos:	Alarmas.Ajustes del ventilador.Períodos de apnea.Funciones inmediatas.
Diario de mantenimiento:	 Alarmas técnicas. Resultados de las pruebas. Mantenimiento preventivo. Historial de servicio. Diario de configuraciones.

$\begin{array}{c} \text{Volumen corriente inspiratorio} \\ \text{(ml):} \\ \text{Volumen minuto inspiratorio} \\ \text{(l/min):} \\ \text{Tiempo hasta alarma de apnea} \\ \text{(s):} \\ \text{Automode, ventana(s) de trigger:} \\ \text{PC/PS sobre PEEP (cmH}_2\text{O}) \\ \text{PC/PS sobre PEEP (cmH}_2\text{O}) \\ \text{PC/PS sobre PEEP en VNI} \\ \text{(cmH}_2\text{O}) \\ \text{PEEP (cmH}_2\text{O}) \\ \text{PEEP en VNI (cmH}_2\text{O}) \\ \text{PEEP en VNI (cmH}_2\text{O}) \\ \text{Precuencia CMV (resp./min):} \\ \text{Frecuencia SIMV (resp./min):} \\ \text{Tiempo de ciclo de SIMV (s):} \\ \text{Palta (cmH}_2\text{O}) \\ \text{PEEP (s):} \\ \text{O,2 - 30 s} \\ \text{O,2 - 30 s} \\ \text{O,2 - 30 s} \\ \text{T_{PEEP}(s):} \\ \text{O,1 - 10 s} \\ \text{O,1 - 10 s} \\ \text{Concentración de O}_2\text{ (%):} \\ \text{PRelación I:E:} \\ \text{T_{Insp}(s):} \\ \text{O,1 - 5} \\ \text{O,1 - 5} \\ \text{Nivel NAVA (cmH}_2\text{O}/\mu\text{V}):} \\ \text{O - 15} \\ \text{Conspiración:} \\ \text{Nivel de sensibilidad de disparo Edi (µV):} \\ \text{O,2 - 30 s} \\ \text{O - 100\%} \\$	Ajustes de parámetros Parámetro:	Rango de ajus Niños	te: Adultos
(I/min): Tiempo hasta alarma de apnea $2-45$ $15-45$ Automode, ventana(s) de trigger: $3-15$ $7-12$ PC/PS sobre PEEP (cmH₂O) $0-(80-PEEP)$ $0-(120-PEEP)$ PC/PS sobre PEEP en VNI (cmH₂O) $0-(32-PEEP)$ $0-(32-PEEP)$ PEEP (cmH₂O) $0-50$ $0-50$ PEEP en VNI (cmH₂O) $2-20$ $2-20$ Presión CPAP (cmH₂O): $2-20$ $-$ Frecuencia CMV (resp./min): $4-150$ $4-150$ Frecuencia SIMV (resp./min): $1-60$ $1-60$ Tiempo de ciclo de SIMV (s): $0,5-15$ $1-15$ Palta (cmH₂O) $(PEEP+1)-50$ $(PEEP+1)-50$ T _{alta} (s): $0,2-30$ s $0,2-30$ s T_{PEEP} (s): $0,1-10$ s $0,1-10$ s PS sobre P_{alta} (cmH₂O): $0-(80-P_{alta})$ $0-(120-P_{alta})$ Concentración de O_2 (%): $21-100$ $21-100$ Relación I:E: $1:10-4:1$ $1:10-4:1$ T_{Insp} (s): $0,1-5$ $0,1-5$ Nivel NAVA (cmH₂O/µV): $0-15$ $0-15$ Sensibilidad de disparo Edi (µV): $0-1,5$ $0-$		2 – 350	100 – 4000
(s): Automode, ventana(s) de trigger: $PC/PS \text{ sobre PEEP (cmH}_2O) \qquad 0 - (80 - PEEP) \qquad 0 - (120 - PEEP) \\ PC/PS \text{ sobre PEEP en VNI} \qquad 0 - (32 - PEEP) \qquad 0 - (32 - PEEP) \\ PCPS \text{ sobre PEEP en VNI} \qquad 0 - (32 - PEEP) \qquad 0 - (32 - PEEP) \\ (cmH}_2O) \qquad 0 - 50 \qquad 0 - 50 \\ PEEP (cmH}_2O) \qquad 0 - 50 \qquad 0 - 50 \\ PEEP en VNI (cmH}_2O) \qquad 2 - 20 \qquad 2 - 20 \\ Presión CPAP (cmH}_2O): \qquad 2 - 20 \qquad - \\ Frecuencia CMV (resp./min): \qquad 4 - 150 \qquad 4 - 150 \\ Frecuencia SIMV (resp./min): \qquad 1 - 60 \qquad 1 - 60 \\ Tiempo de ciclo de SIMV (s): \qquad 0,5 - 15 \qquad 1 - 15 \\ P_{alta} (cmH}_2O) \qquad (PEEP + 1) - 50 \qquad (PEEP + 1) - 50 \\ T_{alta} (s): \qquad 0,2 - 30 s \qquad 0,2 - 30 s \\ T_{PEEP} (s): \qquad 0,1 - 10 s \qquad 0,1 - 10 s \\ PS \text{ sobre P}_{alta} (cmH}_2O): \qquad 0 - (80 - P_{alta}) \qquad 0 - (120 - P_{alta}) \\ Concentración de O_2 (%): \qquad 21 - 100 \qquad 21 - 100 \\ Relación I:E: \qquad 1:10 - 4:1 \qquad 1:10 - 4:1 \\ T_{Insp} (s): \qquad 0,1 - 5 \qquad 0,1 - 5 \\ Nivel NAVA (cmH}_2O/\muV): \qquad 0 - 15 \qquad 0 - 15 \\ Sensibilidad de disparo Edi (\muV): 0,1 - 2,0 0,1 - 2,0 T_{Pausa} (%) de tiempo de ciclo de respiración): \\ Nivel de sensibilidad de disparo 0 - 100\% 0 - 100%$		0,3 – 20	0,5 – 60
$\begin{array}{llllllllllllllllllllllllllllllllllll$		2 - 45	15 – 45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3 - 15	7 – 12
$\begin{array}{llllllllllllllllllllllllllllllllllll$	PC/PS sobre PEEP (cmH ₂ O)	0 - (80 - PEEP)	
PEEP en VNI (cmH $_2$ O) 2 – 20 2 – 20 Presión CPAP (cmH $_2$ O): 2 – 20 – Frecuencia CMV (resp./min): 4 – 150 4 – 150 Frecuencia SIMV (resp./min): 1 – 60 1 – 60 Tiempo de ciclo de SIMV (s): 0,5 – 15 1 – 15 Palta (cmH $_2$ O) (PEEP + 1) – 50 Talta (s): 0,2 – 30 s 0,2 – 30 s T_{PEEP} (s): 0,1 – 10 s 0,1 – 10 s T_{PEEP} (s): 0 – (80 – T_{Palta}) 0 – (120 – T_{Palta}) Concentración de O $_2$ (%): 21 – 100 21 – 100 Relación I:E: 1:10 – 4:1 1:10 – 4:1 T_{Insp} (s): 0,1 – 5 0,1 – 5 T_{Palusa} (s): 0 – 15 T_{Palusa} (s): 0 – 1,5 T_{Palusa} (% de tiempo de ciclo de 0 – 30 T_{Talusa} (% de ti		0 - (32 - PEEP)	0 – (32 - PEEP)
Presión CPAP (cmH $_2$ O): 2 – 20 – Frecuencia CMV (resp./min): 4 – 150 4 – 150 Frecuencia SIMV (resp./min): 1 – 60 1 – 60 Tiempo de ciclo de SIMV (s): 0,5 – 15 1 – 15 P_{alta} (cmH $_2$ O) (PEEP + 1) – 50 (PEEP + 1) – 50 P_{alta} (s): 0,2 – 30 s 0,2 – 30 s P_{alta} (s): 0,1 – 10 s 0,1 – 10 s P_{alta} (cmH $_2$ O): 0 – (80 – P_{alta}) 0 – (120 – P_{alta}) Concentración de O $_2$ (%): 21 – 100 21 – 100 Relación I:E: 1:10 – 4:1 1:10 – 4:1 P_{alta} (cmH $_2$ O): 0,1 – 5 P_{alta} (cmH $_2$ O): 0 – 15 P_{alta} (cmH $_2$ O): 1 – 100 P_{alta} (cmH $_2$ O	PEEP (cmH ₂ O)	0 – 50	0 – 50
Frecuencia CMV (resp./min): $4-150$ $4-150$ Frecuencia SIMV (resp./min): $1-60$ $1-60$ Tiempo de ciclo de SIMV (s): $0,5-15$ $1-15$ P _{alta} (cmH ₂ O) (PEEP + 1) - 50 (PEEP	PEEP en VNI (cmH ₂ O)	2 – 20	2 – 20
Frecuencia SIMV (resp./min): $1-60$ $1-60$ Tiempo de ciclo de SIMV (s): $0,5-15$ $1-15$ P_{alta} (cmH ₂ O) (PEEP + 1) - 50 (PEEP + 1) - 50 T_{alta} (s): $0,2-30$ s $0,2-30$ s T_{PEEP} (s): $0,1-10$ s $0,1-10$ s PS sobre P_{alta} (cmH ₂ O): $0-(80-P_{alta})$ $0-(120-P_{alta})$ Concentración de O_2 (%): $21-100$ $21-100$ Relación I:E: $1:10-4:1$ $1:10-4:1$ T_{Insp} (s): $0,1-5$ $0,1-5$ Nivel NAVA (cmH ₂ O/μV): $0-15$ $0-15$ Sensibilidad de disparo Edi (μV): $0,1-2,0$ $0,1-2,0$ T_{Pausa} (s): $0-1,5$ $0-1,5$ T_{Pausa} (% de tiempo de ciclo de $0-30$ $0-30$ respiración): Nivel de sensibilidad de disparo $0-100\%$ $0-100\%$	Presión CPAP (cmH ₂ O):	2 – 20	-
Tiempo de ciclo de SIMV (s): $0.5-15$ $1-15$ P_{alta} (cmH $_2$ O) (PEEP + 1) - 50 (PEEP + 1) - 50 T_{alta} (s): $0.2-30$ s $0.2-30$ s $0.2-30$ s $0.2-30$ s $0.1-10$ c 0.1	Frecuencia CMV (resp./min):	4 – 150	4 – 150
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Frecuencia SIMV (resp./min):	1 – 60	1 – 60
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Tiempo de ciclo de SIMV (s):	0,5 – 15	1 – 15
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P _{alta} (cmH ₂ O)	(PEEP + 1) - 50	(PEEP + 1) - 50
PS sobre P_{alta} (cm H_2O): $0 - (80 - P_{alta})$ $0 - (120 - P_{alta})$ Concentración de O_2 (%): $21 - 100$ $21 - 100$ Relación I:E: $1:10 - 4:1$ $1:10 - 4:1$ $1:10 - 4:1$ T_{Insp} (s): $0,1-5$ $0,1-5$ Nivel NAVA (cm $H_2O/\mu V$): $0-15$ $0-15$ Sensibilidad de disparo Edi (μV): $0,1-2,0$ $0,1-2,0$ T_{Pausa} (s): $0-1,5$ $0-1,5$ T_{Pausa} (% de tiempo de ciclo de $0-30$ $0-30$ respiración): Nivel de sensibilidad de disparo $0-100\%$ $0-100\%$	T _{alta} (s):	0,2 - 30 s	0,2 - 30 s
Concentración de O_2 (%): 21 – 100 21 – 100 Relación I:E: 1:10 – 4:1 1:10 – 4:1 T_{Insp} (s): 0,1 – 5 0,1 – 5 Nivel NAVA (cmH ₂ O/μV): 0 – 15 0 – 15 Sensibilidad de disparo Edi (μV): 0,1 – 2,0 0,1 – 2,0 T_{Pausa} (s): 0 – 1,5 0 – 1,5 T_{Pausa} (% de tiempo de ciclo de 0 – 30 0 – 30 respiración): Nivel de sensibilidad de disparo 0 – 100% 0 – 100%	T _{PEEP} (s):	0,1 - 10 s	0,1 - 10 s
Relación I:E: $1:10-4:1$ $1:10-4:1$ T_{Insp} (s): $0,1-5$ $0,1-5$ $0,1-5$ Nivel NAVA (cmH $_2$ O/ μ V): $0-15$ $0-15$ Sensibilidad de disparo Edi (μ V): $0,1-2,0$ $0,1-2,0$ T_{Pausa} (s): $0-1,5$ $0-1,5$ T_{Pausa} (% de tiempo de ciclo de $0-30$ $0-30$ respiración): Nivel de sensibilidad de disparo $0-100\%$ $0-100\%$	PS sobre P _{alta} (cmH ₂ O):	0 - (80 - P _{alta})	0 - (120 - P _{alta})
T_{Insp} (s): 0,1 – 5 0,1 – 5 Nivel NAVA (cmH ₂ O/μV): 0 – 15 0 – 15 Sensibilidad de disparo Edi (μV): 0,1 – 2,0 0,1 – 2,0 T_{Pausa} (s): 0 – 1,5 0 – 1,5 T_{Pausa} (% de tiempo de ciclo de 0 – 30 0 – 30 respiración): Nivel de sensibilidad de disparo 0 – 100% 0 – 100%	Concentración de O ₂ (%):	21 – 100	21 – 100
Nivel NAVA (cm $H_2O/\mu V$): $0-15$ $0-15$ Sensibilidad de disparo Edi (μV): $0,1-2,0$ $0,1-2,0$ T_{Pausa} (s): $0-1,5$ $0-1,5$ T_{Pausa} (% de tiempo de ciclo de $0-30$ $0-30$ respiración): Nivel de sensibilidad de disparo $0-100\%$ $0-100\%$	Relación I:E:	1:10 – 4:1	1:10 – 4:1
Sensibilidad de disparo Edi (μ V): 0,1 – 2,0	T _{Insp} (s):	0,1 – 5	0,1 – 5
T_{Pausa} (s): $0-1,5$ $0-1,5$ T_{Pausa} (% de tiempo de ciclo de $0-30$ $0-30$ respiración): Nivel de sensibilidad de disparo $0-100\%$ $0-100\%$	Nivel NAVA (cmH ₂ O/µV):	0 – 15	0 – 15
T_{Pausa} (% de tiempo de ciclo de $0-30$ $0-30$ respiración): Nivel de sensibilidad de disparo $0-100\%$ $0-100\%$	Sensibilidad de disparo Edi (µV):	0,1 - 2,0	0,1 – 2,0
respiración): Nivel de sensibilidad de disparo 0 – 100% 0 – 100%	T _{Pausa} (s):	0 – 1,5	0 – 1,5
		0 – 30	0 – 30
		0 – 100%	0 – 100%

Ajustes de parámetros Parámetro:	Rango de ajus Niños	ite: Adultos
Sensibilidad de disparo por presión (cmH ₂ O):	-20 – 0	-20 – 0
Retardo insp. (% del tiempo de ciclo de respiración):	0 – 20	0 – 20
Retardo insp. (s):	0 – 0,2	0 - 0,4
Fin del ciclo de insp. (% del flujo máximo):	1 – 70	1 – 70
Fin del ciclo de insp. en VNI (% del flujo máximo):	10 – 70	10 – 70

Ajustes de apoyo Parámetro:	Rango de ajus Niños	te: Adultos
Volumen corriente inspiratorio (ml):	2 – 350	100 – 4000
PC sobre PEEP (cmH ₂ O)	5 – (80 -PEEP)	5 – (120 - PEEP)
PC sobre PEEP en VNI	5 – (32 - PEEP)	5 – (32 - PEEP)
Frecuencia CMV (resp./min):	4 – 150	4 – 150
Relación I:E:	1:10 – 4:1	1:10 – 4:1
T _{Insp} (s):	0,1 – 5	0,1 – 5

Ventilación no invasiva (opcional)	
Nivel máx. de compensación de fugas	
Adultos	65 l/min
■ Niños, VNI:	25 l/min
CPAP nasal para niños:	15 l/min
Detección de gama rebasada en fugas:	Automática
Detección de desconexión:	Automática
Flujo de desconexión:	Configurable
Bajo	7,5 l/min
Alto	- 40 l/min (Adultos)
	- 15 l/min (Niños)
Desactivado	Desactiva la detección de desconexión
Detección de conexión:	Manual o automática a través del flujo base

Herramienta Open Lung Tool	(OLT) (opcional)
Tres tendencias gráficas simultáneas, presentadas respiración a respiración:	 P Insp f y PEEP (Presión inspiratoria final y Presión positiva espiratoria final).
	 V.c., y V.c., (Volumen corriente inspiratorio y Volumen corriente espiratorio).
	3. C din i y VTCO ₂ *
	(Compliance dinámica inspiratoria [= V.c.i./P Insp f – PEEP] y eliminación de corriente de CO ₂ *).
	* Requiere la opción Analizador de CO_2 de SERVO-i.
Valores almacenados respiración a respiración:	Hasta 21.600 respiraciones.

Herramienta Open Lung Tool (OLT) (opcional)
Función de cursor:	Un cursor puede desplazarse con el mando giratorio principal o usando la pantalla táctil. Al moverlo por el gráfico aparecen los valores numéricos de los parámetros vigentes en ese momento.
Función de zoom:	La resolución de tiempo del eje x puede seleccionarse en cinco pasos diferentes.
Marcas de tiempo:	Horas y minutos (cuando se miden valores).

Parámetro:	Gama de ajustes
Respiraciones de oxígeno:	100% durante 1 minuto
Respiración inicial:	Iniciación de 1 respiración (en el modo SIMV, iniciación de 1 respiración mecánica)
Pausa:	Insp. o esp. (0 – 30 segundos)
Silenciamiento/reposición de alarma:	2 minutos de silencio y reposición de alarmas retenidas
Compensación de compliance:	Conexión/desconexión
Automode (opcional):	Conexión/desconexión de Automode
Nebulizador (optativo)	5 - 30 min./Continuo/Desconectado
Ventilación de apoyo	Conexión y desconexión de apoyo

Soporte de aspiración	
Tiempo de preoxigenación:	Máx. 2 min
Tiempo de postoxigenación:	Máx. 1 min
Tiempo de fase de aspiración:	No nivel máximo
Nivel de oxígeno ajustable:	21 – 100 %

Índice de estrés (opcional)	
Valores presentados:	 IE (Índice de estrés) PEEP (Presión positiva espiratoria final). V.c._{e.} (Volumen corriente espirado).
Valores almacenados:	 120 valores almacenados en el gráfico Valores de tendencia almacenados hasta 24 horas
Función de cursor:	Un cursor puede desplazarse con el mando giratorio principal. Al moverlo por el gráfico aparecen los valores numéricos de los parámetros vigentes en ese momento.
Marcas de tiempo:	Horas y minutos (cuando se miden valores).

Comunicación/Interfaz	
Puertos serie (2):	RS-232C - aislado. Para comunicación de datos por el emulador de la interfaz de comunicación (CIE, Communication Interface Emulator).
Conector de salida de alarma (o	opcional)
Conector:	Conector modular de 4 polos
Valores nominales:	Máx. 40 V CC, máx. 500 mA, máx. 20 W
Conexión a red (opcional):	Conexión a monitor MIB (Medical Information Bus, Bus de información médica)
Transferencia de datos (opcional):	A través de tarjeta Ventilation Record Card
Transferencia de imagen de pantalla (opcional)	A través de tarjeta Ventilation Record Card

Guardar datos Registro de valores de curvas y Se grabarán 20 segundos de datos (los 10 segundos previos parámetros actuales: y los 10 segundos siguientes a la activación). NAVA (opcional) Tamaño: Módulo Edi: 154 x 90 x 21 mm Cable del catéter Edi: Longitud: 2 m Peso - Módulo Edi: 0,25 kg Alimentación - Tensión de Alimentado desde el SERVO-i. alimentación de módulo Edi: < 3 W a 12 V (funcionamiento normal) Parámetros: Curva Edi Curvas de derivaciones de **ECG** Curva de presión estimada de NAVA (Pest) Catéteres Edi: • 6 Fr, longitud 49 cm 6 Fr, longitud 50 cm 8 Fr, longitud 100 cm 8 Fr, longitud 125 cm

12 Fr, longitud 125 cm 16 Fr, longitud 125 cm

Analizador de CO₂ de SERVO-i (opcional)

Tamaño:

Módulo de Analizador de 15 CO₂:

154 x 90 x 43 mm

Sensor: 32,0 mm x 47,0 mm x 21,6 mm

Peso:

Módulo de Analizador de

450 g

CO₂:

Sensor:

20 g

Adaptador vías respiratorias: 10 g

Conectores y cables:

Cable del sensor: 2,8 m

Condiciones de funcionamiento

Temperatura de funcionamiento:

+10°C a + 33°C

Analizador de CO ₂ de SERVO-	-i – Rendimiento
Método de medición:	En la corriente principal, longitud de onda doble, infrarrojos no dispersivos.
Parámetros:	 Capnograma Concentración corriente final de CO₂ (etCO₂). Eliminación de CO₂ por minuto (\(\foatim{V}CO_2\)). Eliminación de CO₂ periódica (VTCO₂).
Rango de medición:	 0 a 150 mm Hg de presión parcial de CO₂. 0 a 20 kPa de presión parcial de CO₂. 0 a 19,7 % de volumen de CO₂ (a una presión barométrica de 1013 hPa).
Tiempo de respuesta del sistema CO ₂	El tiempo total de respuesta del sistema de monitor de CO_2 cuando se expone por primera vez al aire y después a una mezcla de gases con 5,0 % de CO_2 es <250 ms.
Tiempo de calentamiento:	15 s hasta la indicación inicial de CO ₂ , máximo de 2 minutos hasta la especificación completa
Compensación de concentración oxígeno:	Automática. Valores suministrados desde el SERVO-i Ventilator System.
Compensación de presión barométrica:	Automática. Valores suministrados desde el SERVO-i Ventilator System.

100 Hz

< 5 ml

<1 ml

Tasa de digitalización:

Adultos:

Niños:

Espacio muerto del adaptador de las vías respiratorias:

Registro del sensor Y (opcional) Tamaño: Módulo de sensor Y: 154 x 90 x 43 mm Sensor Y para adultos: Longitud 84 mm Sensor Y para niños: Longitud 51 mm Peso: Módulo de sensor Y: 0,4 kg Sensor Y para adultos: 10,5 g Sensor Y para niños: 7,5 g Material del sensor: Policarbonato Makrolon. Tubos: PVC de grado médico de 2 m. Alimentación - Tensión de Alimentado desde el SERVO-i. alimentación del módulo del < 5 W a 12 V (funcionamiento sensor Y: normal).

Registro del sensor Y – Rendimiento	
Método de medición:	Orificio fijo, presión diferencial.
Parámetros:	Presión de vías respiratorias.
	Flujo de vías respiratorias.
	Volúmenes inspiratorio y espiratorio.

Rango de medición:

Adultos: 2 a 180 l/min Niños: 0,125 a 40 l/min

Espacio muerto del adaptador de las vías respiratorias:

Adultos: < 9,0 mlNiños: < 0,45 ml

opcionales)
Aprox. 216 g
Alto 105 mm x Largo 108 mm x Ancho 60 mm
2,0 m
Mediana de diámetro de masa (MMAD) de 1 - 5 μm
>0,2 ml/min
■ Pro - 10 ml
Solo - 6 ml
10 %

SERVO-i Mobile Cart (opcional)	
Peso:	21 kg
Dimensiones:	Alto 992 mm x Largo 640 mm x Ancho 560 mm (véanse los dibujos técnicos que se presentan a continuación)

SERVO-i Drawer kit (opcional)

Peso: 4,5 kg

Dimensiones: Alto 240 mm x Largo 210 mm x

Ancho 300 mm

SERVO-i Holder (opcional)

Peso: 3,5 kg

Dimensiones: Alto 352 mm x Largo 247 mm x

Ancho 159 mm

(véanse los dibujos técnicos

que se presentan a continuación)

SERVO-i Shelf Base (opcional)

Peso: 1,2 kg

Dimensiones: Alto 29 mm x Largo 205 mm x

Ancho 159 mm

(véanse los dibujos técnicos

que se presentan a continuación)

Gas cylinder restrainer (opcional)

Carga máxima: 2 botellas de 5 litros

SERVO-i IV Pole (opcional)

Carga máxima (total): 6 kg

Gas trolley (opcional)

Carga máxima: 2 botellas de 10 kg

Acoplamiento: Acoplable a SERVO-i Mobile

Cart.

Acoplable a un colgador de pared independiente.

Compressor Mini (opcional)

Véase la hoja de datos independiente.

Servicio técnico

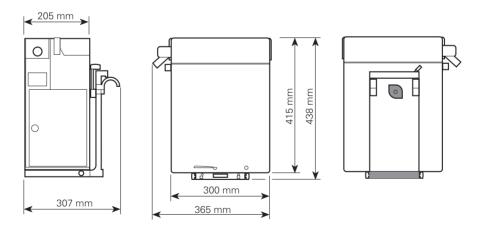
Mantenimiento regular: Una vez cada 12 meses o como

mínimo después de 5.000 horas

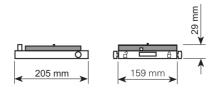
de funcionamiento.

Nota

Para inexactitudes y especificaciones técnicas más detalladas, consulte el Manual del usuario.


Información sobre pedidos

SERVO-i, equipo de ventilación y accesorios: Véase la información independiente: "SERVO-i Diagrama de flujo del sistema" (N.º de catálogo: 66 70 102).


Dibujos técnicos

SERVO-i en Mobile Cart SERVO-i Holder 355 mm 1292 mm 247 mm < 159 mm > 640 mm 560 mm

SERVO-i (unidad de paciente) en SERVO-i Holder

SERVO-i Shelf Base

MAQUET GETINGE GROUP

Maquet Critical Care AB Röntgenvägen 2 SE-171 54 Solna, Sweden Phone: +46 (0) 8 730 73 00 www.maquet.com

For local contact:

Please visit our website www.maquet.com

GETINGE GROUP es uno de los proveedores líderes a nivel mundial de productos y sistemas que contribuyen a mejorar la calidad y la eficacia en costes dentro del ámbito de la asistencia médica y de las ciencias biológicas. Las operaciones se realizan a través de tres marcas: ArjoHuntleigh, GETINGE y MAQUET. ArjoHuntleigh se centra en la movilidad del paciente y en soluciones para el tratamiento de la curación de las heridas. GETINGE proporciona soluciones de control dentro del ámbito de la asistencia médica y de prevención de contaminación dentro de las ciencias biológicas. MAQUET se especializa en soluciones, terapias y productos para intervenciones quirúrgicas, cardiología intervencionista y cuidados críticos.